1. トップ
  2. ブログ・お知らせ
ブログ・お知らせ

e-20

2019.01.19

In the early years of the twentieth century, astrophysicists turned their attention to a special category of stars, known as cepheid variables. A variable star is one whose apparent brightness changes from time to time. Among some variables, the change in brightness occurs so slowly as to be almost imperceptible; among others, it occurs in sudden, brief, violent bursts of energy. Cepheid variables (which take their name from the constellation Cepheus, where the first such star was discovered) have special characteristics that make them a useful astronomical tool. It was Henrietta Leavitt, an astronomer at the Harvard Observatory, who first examined the cepheid variables in detail. She found that these stars vary regularly in apparent brightness over a relatively short period of time―from one to three days to a month or more. This variation in brightness could be recorded and precisely measured with the help of the camera, then still a new tool in astronomy. Leavitt also noticed that the periodicity of each cepheid variable―that is, the period of time it took for the star to vary from its brightest point to its dimmest, and back to its brightest again―corresponded to the intrinsic or absolute brightness of the star. That is, the greater the star's absolute brightness, the slower its cycle of variation. Why is this so? The variation in brightness is caused by the interaction between the star's gravity and the outward pressure exerted by the flow of light energy from the star. Gravity pulls the outer portions of the star inward, while light pressure pushes them outward. The result is a pulsating, in―and―out movement that produces increasing and decreasing brightness. The stronger the light pressure, the slower this pulsation. Therefore, the periodicity of the cepheid variable is a good indication of its absolute brightness. Furthermore, it is obvious that the apparent brightness of any source of light decreases the further we are from the light. Physicists had long known that this relationship could be described by a simple mathematical formula, known as the inverse square law. If we know the absolute brightness of any object―say, a star―as well as our distance from that object, it is possible to use the inverse square law to determine exactly how bright that object will appear to be. This laid the background for Leavitt's most crucial insight. As she had discovered, the absolute brightness of a cepheid variable could be determined by measuring its periodicity. And, of course, the apparent brightness of the star when observed from the earth could be determined by simple measurement. Leavitt saw that with these two facts and the help of the inverse square law, it would be possible to determine the distance from earth of any cepheid variable. If we know the absolute brightness of the star and how bright it appears from the earth, we can tell how far it must be. Thus, if a cepheid variable can be found in any galaxy, it is possible to measure the distance of that galaxy from earth.

総合英語塾ブログ・お知らせ

学習スタイル

テキスト&解説

合格体験記

お問い合わせ

E-mail
fgifgi@hotmail.com

■返信が届かないお客様へ

当英語塾は遅くとも2日以内にお問い合わせに対する返事のメールを差し上げています。
もし、2日以内に当英語塾から連絡がない場合は、メールの受信がうまく行えていない可能性が大です。
その際は、大変お手数ではございますが、お電話にてお問合せください。